IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Optical properties of an isotropic layer on a uniaxial crystal substrate

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1992 J. Phys.: Condens. Matter 4 6569
(http://iopscience.iop.org/0953-8984/4/31/009)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.159
The article was downloaded on 12/05/2010 at 12:26

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/4/31
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys.: Condens. Matter 4 (1992} 6569—6586. Printed in the UK
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Received 25 February 1992, in final form 22 May 1992

Abstract. The optical properties of a homogeneous isotropic layer on an anisotropic
uniaxial crystal are characterized by four reflection amplitudes (rss, rsp, rpp, 7ps) and
four transmission amplitudes (£s0, fse, tpo, tpe). We give analytic expressions for these
amplitudes, Some recent experiments relating to the geophysically important phenomenon
of the surface melting of ice below 0°C are discussed. The weak anisotropy of ice is
amplified a hundredfold by index matching (the refractive indices of ice and water are
not very different), but it is still qualitatively correct to interpret the experiments by
assuming ice to be isotropic. An appendix gives the theory of what is measured in
pofarization modufation eflipsometry when anisotropy &5 present, and another appendix
discusses the enhancement of anisotropy by refractive index matching.

1. Introduction

The optical properties of a homogencous isotropic layer on an isotropic substrate
are well known (see for example Born and Wolf (1965), section 1.6.4, or Lekner
(1987), section 2-4). They may be characterized by two reflection amplitudes r, and
r,, and two transmission amplitudes ¢, and ¢,. When the isotropic layer rests on an
anisotropic substrate, the currently available 4 x 4 matrix method (see, for example,
Wohler et al (1988) or Eidner e al (1989) for recent work and further references) may
be used to evaluate numerically the four reflection amplitudes r,, ry,, r,., 7, and
the four transmission amplitudes t,,, t.., t,,, ... In two recent papers (Lekner 1991,
1992a) the author has given analytic expressions for the optical coeflicients of uniaxjal
crystals, and of crystal plates illuminated at normal incidence. Here we extend these
results to give analytic expressions for the optical coefficients of an isotropic layer on
a uniaxial crystal substrate.

The isotropic layer has dielectric constant € = n?, and is bounded by the medium
of incidence (¢, = n?) and the uniaxial substrate (¢, = n2, ¢, = n?), at 2 = 0 and
z = Az respectively. The plane of incidence is taken as the zz plane. The direction
cosines of the optic axis of the uniaxial substrate with respect to the =z, y and =z axes
are «, B8 and v; thus ¢ = (&, 3,v) is the unit vector giving the direction of the optic
axis.

We consider reflection and transmission of a planc monochromatic wave of an-
gular frequency w, incident from medium 1 at angle €, to the normal. In the three
media (medium of incidence, the layer, and the anisotropic substrate), all components
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of the electric and magnetic vectors will have dependence on 2 and  contained in
the factor exp i{ K=z — wt), where

K=n,(w/fec)sinb, = n{w/c)sin b (O

is the z-component of all the wavevectors, and 8 is the angle to the normal in the
isotropic layer. The y-component of all the wavevectors is zero, by choice of the
plane of incidence as the zx-plane, and by the invariance of the system with respect
to a y-translation. The z-component of the wavevector of the incident wave is

q, = ny(w/e)cosh, )

and it is —q; for the reflected wave, and £q for the two plane waves in the layer,
where

@ = e/ —KP= k" - K. €

Within the crystal substrate two plane waves can propagate. For uniaxial crystals
these are known as the ordinary and extraordinary waves, and have z-components of
their wavevectors given by

@ =ewift -Ki=ki-K? 4
for the ordinary wave, and

Qe =T — oy Ae/e,y . &)
where

Ac=c¢,—€, - €, =n=c¢+v ¢ T =€ e w/ =K (e, ~B2A€)]/ 2.
e %o ] " ° olCety e ¥
(6)

The electric field vector of the ordinary wave is

E= No(—ﬁqo:aqo“'}lf{’ﬁﬁ’) (7)

and is perpendicular to the optic axis and to the ordinary wavevector (i, 0, ¢.). The
electric field of the extraordinary wave is

Ee = Ne (Odqg' - ﬂYQeI{'a ﬁkga'lf(kg - qz) _"a(IeK') . (8)

N, and N, are normalization factors: we will normalize E, and E, to unit amplitude,
so that |E | =1 =|E,[%.

The plan of the remainder of this paper is as follows. In section 2 we write
down the equations determining the reflection and transmission amplitudes, and a
2 x 2 matrix method for their solution. In section 3 we consider the normal-incidence
case, for which the system is characterized by just two reflection and two transmission
amplitudes, which take a particularly simple form. In section 4 we consider general
oblique incidence. These results are applied in section 5 to experiments on the surface
melting of ice. In the appendices we give a theoretical analysis of what is measured
by polarization modulation ellipsometry, and of the enhancement of the anisotropy
by index matching between the overlayer and the substrate.
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2. The equations for the optical coefficients

An incoming plane wave may be taken as a superposition of s- and p-polarized waves
with appropriate amplitudes and phases. The s and p polarizations have E, respec-
tively perpendicular and paralle! to the plane of incidence (here the zz-plane). We
consider the reflection and transmission of pure s and pure p incident polarizations,
starting with the s polarization. The electric field components in the s-polarized case,
with the common factor exp i( K« — wt) suppressed, are

incident (0,117, 0)

reflected ¢T3 (p, cos by, sin 6,)

557 rsp
within layer (cos B(ae'?” + be™"%), Ae¥? + Be 197, —sin B ael?? — be~i97))
within crystal  t B e'9(:=8%) 4 4 [ elte(z=57} ©)

The wavefunction within the layer has the property that the downward-propagating
part has its Poynting vector (proportional to E x B) along (K, 0, g), while the
vpward-propagating part has E x B along (K, 0, —¢), with proportionality constants
A? 4+ a? and B? + b?, respectively. These results follow on using the identity

geos@+ Ksinf =nwjc=k (10)

which comes from K = ksin @, g = kcos g,

The wavefunctions (9) contain the eight unknowns rg, Pspr A, B, a, b, tg,
t.., and the eight conditions determining them follow from the continuity of the
tangential components of E and B at z = 0 and at z = Az. The continuity of E,,
E, 8E, [0z, and OE [8z—iKE, at z = 0 gives the equations

l4r,=A+B 7y, €088 = (a + b)cos @ an
q:1(1-r,) = q(A~ B} = kyry, = k{a - b).
The same conditions at z = Az, with the notation
A= Aeitas B' = BeTi14: a' = qe'?d? b = be~i94s (12)
and with E = (XY, Z) for the ordinary and extraordinary modes, give
A+ B =Y, +1.Y.
(@' +V)cos =1, X, + t,. X, a3

Q(A’ - B’) = tsoQoY:‘: + -tseq'ey'e
k(o' = V) =t (¢, X,— KZ,) + t,(q.X,—~ KZ,).

We will give two solutions of this system of eight equations: a 2 x 2 matrix method
modelled on Lekner (1992a) which will prove particularly simple at normal incijdence,
and an algebraic method that puts the solutions into a more physically revealing form
at general incidence. The 2 x 2 matrix method is given here. We define the vectors

(1) () () (D) e
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and the diagonal cosine matrices

{1 o {1 o
€= (0 cosG,) c= (0 cosﬂ) (15)
Then the equation set (11} can be written as
u+C'Cr=3s (g:/g¥(uw—-CCTl) =d. (16)

For the set of equations resulting from the continuity of the tangential components
of E and B at z = A=z, we define the vectors

A+ B’ . A - B’ t,
31:(a’+b') dz(a’—b’) tz(ts:) an
and the matrices

M= (?’? ;‘Ce) N= (%Xfo—y‘}fzo qexffef\'ze) - 09
’i‘hen the equation set (13) can be written as

Cs' = Mt qC~1d’' = Nt. (19)
The vectors s* and &' are linear combinations of s and d:
8 =cosqgAzs+tisingAzd d =cosqAzd+isingAzs. (20)
The equations (19) give

t=M"1Cs = gN-IC~1d. 2D

On substituting for s’ and d’ using (20) and (16), we obtain a linear equation for =
in terms of « which has the form Vr = Wu, with

V = N"Yeq,C7' —isgC™2Cy ) + ¢~ "M~ (cgC, —i5q, C*CTY)

. (22)
W= N"'C""(cq, +isq) — ¢! M~ C(cq + isq)
where ¢ = cos g Az and s = sin g Az, Thus
r =V 'Wu=Ru (23)

may be obtajned by inversion and multiplication of 2 x 2 matrices. Explicit and
beautifully simple results follow from this formulation at normal incidence, as will
be demonstrated in the next section, but we must first discuss the case of incident p
polarizatjon.

For p-polarized incident light, the electric field components are

incident e'91%(cos 6,,0,—sin 8,)
reflected e (r cos By, 1,7, 5in 0))
within layer (cos O(ae'?® + be™19%), Ael?® 4+ Be™i1% _gin 8 ae'I* — be~i17Y)

within crystal 1, E,e' 4% 4 1 B ¢i1e(s=a2), (24)
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The continvity of E,, E,, 8E, /92, 0E, /82 —iKE, at z = 0 implies

ros = A+ B (14 7,,)cos0; = (a+ bycosb

- @7y = q(A - B) ky(1=ry,) = k(a~b). (25)
At z = Az the boundary conditions give the same equations (13) as for an incoming

s polarization, with ¢ replacing ¢, and ¢, replacing f,.. A 2 x 2 matrix solution is
as follows: we introduce the vectors

t 0
=) =) =) 9
Top tpe 1
with all other vectors and matrices defined as above. Then the first and second pairs
in (25) read

s =C71C, (v + ') d=qq 'CCT (v —r"). 27
The remainder of the solution proceeds as before, with the result

v =V IWes =Ry (28)
where V is as defined in (22), and
W' = N~ (eq; €7 +isqC™3C) — 7M™ (g€, +1s5g,C*CTY). (29)

Equations (23) and (28) give the reflection amplitudes in terms of the 2 x 2 matrices
R and R’. The transmission amplitudes can be found in terms of the same two

matrices: we obtain
t=¢ "M '[cq(C+ C;R) +isq,(C - C*CT'R)]u 0)
t' = ¢" "M }[eq(C, + C R’} +isqy (C2CT! — C2CTIR)]v. "

We shall next use these results to obtain simple formulae for the reflection and
transmission amplitudes at normal incidence.

3. Normal incidence
At normal incidence (I — 0) we have
q — & qg—k g, — Ry qe — ke = Ko /n,. (31)

The ordinary and extraordinary modes within the uniaxial crystal also simplify (Lekner
(1991), section 5.4):

E, — N, (-8,a,0) E,— NJ(a,3,v(1 —€./¢,)) (32)

The cosine matrices, defined in (15), reduce to the identity matrix. The M matrix
and the N matrix, defined in (18), can be written as

= (5 (e w) vem ) @
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We then find that the matrix R in » = Ru simplifies to
2 2
— A2 -1 [ @fry + Bfr, aB(r,—r,)
where

. k(ky — k) cosk Dz +i(k? = kjk,)sink Az
©7 k(ky + ky)coskAx —i(k? + Rk )sink Az

(35)

and the formula for r, is obtained by replacing %, by k, in (35). We recognize
r, and r, as the normal-incidence reflection amplitudes for an isotropic layer on
isoiropic substrates of refractive index n, and n,n,/n., respectively (see Lekner
(1987), equation (2.52)).

Thus

Tes = (0127‘0 + ﬁzfe)/(az + A% = r,cos® ¢ + Ty sin?¢
Pap = a,@(re - ro)/(az + ﬁz) = (T'o - T‘e) cos ¢ sin ¢

where ¢ is the angle between the E, direction and the incident ficld E,. For p
polarization incident, the matrix R’ is equal to R as given in (34) for normal incidence.
Thus

(36)

Tps = af(r, —1,) [{a® + 8°) = (r, —r, ) cos psin g

37
Top = (@71 + B2r,)/(0® + 7)) = rocos® ¢ + 7, sin? ¢. @D

In the limit of zero thickness of the layer (Az — 0), these formulae reduce to the
reflection amplitudes for a bare crystal, as given in Lekner (1991), equations (71) to
(73). |

Just as r and #', which have as components the four reflection amplitudes r,,,
Tsps Tps» Tpps €A1 be expressed (at normal incidence) in terms of the two amplitudes
T, and 7, so can ¢ and ¥, which have the transmission amplitudes t,,, 1., 20
t,. as components, be expressed in terms of ¢, and ¢, which are the transmission
amplitudes for a layer of thickness Az on isotropic substrates of indices n, and

NN /N
to = k7 k(1 + r)cosk Az +ik (1 —7,)sin kAz]
= 2k ke f[R(Ey + ko) cosk Az — (k% + k k) sink Az] (38

(1. is obtained by replacing k, with &, in (38)). We find that t and t' can be written
as

t=Tu t'=To (39
where _
-l -
r=e+o (% 205 (G P

aN7t, -,BN;“HO) _

=(a2+,32)—1 (ﬁNe_lte Q,Ne—lte (40)
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Thus

to = el . /(a® + 67) te = BNt /(0® + 87)

tho = —ANG 't /(e + 8%)  t,.=aN 't [(e® + /%)
In the limit of zero thickness of the layer, the formulae (41) reduce to the direct
transmission amplitudes into a uniaxial crystal, as given in Lekner (1991), equations
(78) and (79).

Since the reflection and transmission properties at normal incidence are entirely
determined by the amplitudes r,, r, and £, t,, we will note the behaviour of the
latter as a function of the layer thickness Az. Let
i = (ky — R}/ (ky + k) fo=(k=ko) /(& + k) fo=(k~k)/(k+k,)

(42)

(1)

be the Fresnel s-wave reflection amplitudes at the » = 0 and z = Az faces of the
isotropic layer, in the latter case for substrates of refractive index n, and n,n./n.,.
Then =, and r, can be written as

ro=(f1+foz)/(1r+ flfoz) re=(f1+fez)/(1+f1fez) (43)

where Z = exp(2ik Az). AS Az increases, Z moves on the unit circle in the
complex plane, and since r, and r, are related to Z by a bilinear transformation,
they also move on circles in the complex plane. The period in Az of ali the motions
is = /k. (If the isotropic layer were absorbing, the motions would not be periodic,
but spirals converging onto the origin.) The properties of the loci of r,, », and 1,
t., are as follows (cf Lekner (1992a), sections 4 and 5): when all the media are
non-absorbing, the circles r, and r, are symmetric with respect to reflection in the
real axis. Thus their radii and centres may be found from the intersections with the
real axis at Z = 1. At Z = 41, r, and r, take the zero-thickness values

T:J}' = (k‘l - ko)/(kl + ko) 7‘2. = (kl - ke)/(kl + ke) (44)
while at Z = -1, r_ becomes
vy = (f1 = )/ (L= £if,) = (kik, — K2)/ (ki kg + &%) (45)

(we omit the e versions for the remainder of this section-—they are obtained by
replacing &k, by k, in the formulae). Thus the centre and radjus of the locus of r,
are given by

Co=(rF+rI)2 e =(rF—rD)/2 (46)
The transmission amplitude ¢, can be written as
to=(1+ f)(1+ f)C/(1+ f1£:6P) (47}

where { = exp(ikAz). As Az increases, t, moves on a quartic in the complex
plane, repeating with period 2= /k in Az, The equation of the quartic is found by
eliminating ¢ from (47), using {¢* = 1. If we write t, = X + 1Y, the quartic is

(XY= (1 X)% + (1Y)* (48)
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where ¢ is the value of ¢, at { = £1, and it! is the value at { = &i:

1= 2k Uy hy) = 2k (ki k, + R2). 49)
The reciprocal ¢7' moves on an ellipse, with semiaxes (¢})~! and (#)~!. These

results are closely analogous to those for a uniaxial crystal plate upon an isotropic
substrate, discussed in Lekner (1992a).

4. Obligue incidence
Althouogh the 2x 2 matrix solution gives beautifully simpie results at normal incidence,
I have found it more fruitful to work directly with the original boundary condition
equations (11) and (13} at general incidence. Consider the cquations expressing the
continuity of E, and 8E, /8= at = = 0, namely

1+r,=A+ B 1 -7, =q7'q(A - B). (50)

These may be solved for r, in terms of B/A:

T. =01—Q+(91+Q)B/A= fi+ BJA -
* " q+q+(q—-q)B/A 1+ f[B/A T T

where f, = (g, — q)/(q, + ¢) is the oblique incidence Fresnel s-wave reflection
amplitude for the boundary between the medium of incidence and the layer. The
continuity of E, and 8E, /9x at Az gives a pair of equations (the first and third of
(13)) which may be solved for B/A:

- (q - q°)iso}; + (q - qe)tse}’e .
(q+ q‘o)tsoy; +(q+ Qe)tse},e

B .

T gexp(2igAz) g (52)
Thus the expression for r,, may be put into the form of the s-wave reflection ampli-
tude r, for a layer on an isotropic substrate (medjum 2):

re =N+ L2+ 1 1:2) 7 = (N1 + 92}/ (1 + f192) (33)

where f, = (g~ ¢,)/(q+ ;) and Z = exp(2igA=z) (compare Lekner (1987),
equation (2.38)). Note that g — f, when the substrate becomes isotropic (e , €, —
€,), and then v, — r..

To evaluate g we need the ratio of transmission amplitudes, r, = t_ /¢t . From
the two equations involving the coefficients « and b in (11) we find

a/b=(Q, - Q) (@ +Q}=-F (54)
where @, = ¢,/¢,, Q@ = g/e and F| is the Fresne] p-wave reflection amplitude at

the = = 0 boundary of the layer. From the second and third equations of (13) we
find

(a/0)Z = o'V = (S, + 7,5,)/(Dy + 7.D,) (35)
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where

So= (K +qa.)X,— aKZ,  D,=(k*—qq,)X,+aKZ, (56)
with S, and D, similarly defined. From (54) and (55) we obtain v, = 1, /{,:

T, =—(8,+ D F,2)/(5 .+ D.F Z) &%)
and hence g in terms of known quantities:

9=[{g=q)Yo+ (¢- g )Y.r )/ [(a 4 ¢.,) Y, + (g + 2.} Yo7].  (58)

Just as r,; can be put into the form that r, takes for an isotropic substrate, so
7o Can be put into the form that r, takes in that case:

e = (Fi+ F2) /(1 + FIF, 2} e = (B} + GZ)/(1+ FIGZ) (59

where F) and F, are the Fresnel reflection amplitudes for p waves at the z = 0 and
z = Az interfaces. (F, was defined in (54) and F, = (Q, — Q)/(Q, + Q) where
@, = qu/€,, €, being the dielectric constant of the isotropic substrate.) The form
(59) for r,, follows from the second and fourth equations (25), with

CG=0/d =(b/a)27 = (Dy+ 7,D,.)[($, + 7,5,). (60)
From the other p-wave equations we find the value of 7, = ¢, /t,.:

o =—{le+ e +(a—-a,)f1Z]Y,} /{le + q. + (¢~ ¢.) /L Z]Y.} (61)

having used the fact that
B/A=-fTl=42 (62)

where g’ has the same form as g in (58), with r, replacing 7,. For an isotropic
substrate we have G — F,, and thus r,, — 7.

Figure 1 shows the paths of 7., r,,, ry, and r in the complex plane, for
fixed angle of incidence and variable thickness Az of the isotropic layer. The paths
repeat after thickness = /q, since all the refiection amplitudes are functions of the
thickness via £ = exp(2igAz). As the thickness increases, Z moves on the unit
circle in the complex plane, The loci are close to circles, which indicates that the
functions g(Z) and G(Z) are nearly independent of the layer thickness. (For an
isotropic substrate g — f, and G — Fy, and rg — r, = (fi + f,.2) /(1 + f, /- Z),
rop — Tp = (Fy+ BZ)/(1 + F{ R Z), 7, and 7y — 0; the ry and r, loci are
then exact circles.) Note that the r,, locus moves across the origin as the angle of
incidence increases. This implies that there are two angles at which r_, can be zero:
the Brewster angle of the substrate, for which F| 4+ G{(1) = 0, and another angle at
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30

60
Im

Figure 1. Loci of 1y, pp, rep and rps in the complex plane, for variable thickness
Az of the isotropic layer. The curves are drawn for airfwaterfcalcite at 30° and 60°
angle of incidence, The calcite oplic axis is taken to make equal angles with @, ¥ and
z axes (o, @ and + all take the value 1/v/3). The refractive indices (at 633 nm) are
n = 1.3327, n, = 1.655%, n, = 1.485. The paths repeat with period /¢ In Az,
This is 256 nm at 30° and 312 nm at 60° for 633 nm light incident on water from air.
Zero-thickness values are indicated Iy a doy; arrows indicate the direction of increasing
thickness.

which F} — G(—1) =.0. The corresponding values that Az must have for r, to be
zero are integer xw /g and odd integer xw /2¢, respectively.

The cross-reflection amplitudes »,, and r,, may be obtained from the boundary
conditions on using the values for r,, 7, and r, 7, given above. We find, after
some reduction,

8fi’1Q102k§ ﬁ(aq°+ '.T'K-)(Qe—QO)NDNeZ‘ N

r.,. =
P+t + Q) (1+f1QZ)Dsp 63)
L BR Q%S Blag, — 7K) (9= g )N N.Z “
(e + (@ + Q) (1+ FGZ)Dy,

where the denominators D, and D, are linear in Z:

Dsp = (q + qE)y::So - (q+ qo)}/cnsrz + Fl Z[(Q'i' Qe)y.eDo - (Q + qo)}’oDe] (64)

Dps = ((I+ qe)y:aso"' (q+ QO)YoSe + f]Z[(q_ Qe)yeSo - ((1_ qo)}fo‘s‘e]'
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When Z = exp(2ig Az) is unity, these formulae reduce to the bare crystal values
(denoted by a bar in this paper)

Top = 28(ag, + 7K ) (g, - o) Ry kg NN/ D
oo = 20(0q, — 7K)(ge ~ @) by RIN N/ D

where D is the common denominator of the reflection and transmission amplitudes
(Lekner (1991), formulae (35) and (47)). Similarly r,, and r,, reduce to 7 and
T, @ given by Lekner (1991), equations (34) and (42), when Z = 1. At normal
incidence the formulae of the previous section are regained.

1t is interesting that the ratio of the s to p and p to s reflection amplitudes is not
affected by the presence of the isotropic layer on the crystal. This follows from the
identity

(65)

(1+ f19Z) Dy, = (1 + FGZ) D, (66)

Thus the two complex numbers r,, and r . have a real ratio (and so lie on a common
radius in the complex plane). From (66} and (63) we have that

Tipl Tps = (g + 1K) /(g — 7 IV) 67)

which is the same ratio that is obtained on reflection from the bare crystal. Note
that r,, = r, at normal incidence, and also when the optic axis lies in the reflecting
plane {+ = 0).

At grazing incidence ¢, and @, tend to zero. Thus f, = (¢, —¢)/(q, +q) — -1
and F; = (Q-Q))/(Q+ Q,) — 1. It follows from (53) and (59) that r, — —1
and r,, — 1 at grazing incidence. (For isotropic media it is a general theorem that
r, — —~1 and r, — 1: see Lekner (1987), section 2-3.) From (63) we see that the
cross-reflection amplitudes ry, and r,; both tend to zero as ¢, — 90°.

At normal incidence r,, = r,;, but the result that v, = »r, at §, = 0° for
isotropic media does not generalize to r,, = ry;: see section 3.

The transmission amplitudes are obtained in a similar way to the reflection am-
plitudes. We will just state the results:

tSO

= —2q(S,+ D,F,2)A9%7 /D, 1, =2q(S,+ D,FZ)Ael12* /D,
(68)
where A, is the value of the coellicient A in (11) and (13},
Ay =2q,/[(q + (1 + f102)]. (69)
The transmission amplitudes for the p wave incident are
too = 2kyalg+ . + (g — ) [, Z]Y, A €957/ D, 0
1, = =2k qla + ¢o + (7 — 9.0 /L 2] Y, A6 47/ D,

where

A, =2Q,/[(Q,+ @1+ FLGZ)]. (71)
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5. Application to experiments on the premelting of ice

The premelting of ice, that is, the existence of a layer of water on the surface of ice
below 0°C, has considerable geophysical importance. The compaction of snow, frost
heave, rock fracture, water transport at subzero temperatures, and charge transfer
in the electrification of thunder clouds are some of the topics discussed in a recent
review (Dash 1989), We will discuss some recent optical studies of the surface of
melting of ice. Wc begin with the Elbaum reflectivity experiment (Elbaum 1991,
Elbaum er af 1992), since this is simpler to analyse than the ellipsometry work to be
discussed later in this section.

Elbaum interpreted his data by treating the ice as an isotropic substrate. He
measured the p to p reflected intensity, R, = |, |*, at the Brewster angle, which
was obtained by locating the minimum in R, at temperatures well below 0°C,
when no water layer covercd his ice crystals. As thc temperature was raised to the
melting point, an increased reflectivity was interpreted as being caused by a growing
watcr layer, as follows. On the isotropic substrate model, the reflection amplitude is
approximated by the first equation of (59):

v_F1+FZZ X _Q_Q] ‘_QQ—Q__ e y .
7p"1+F]FZZ ”Fl_iQ-{»-Ql' 'FE—Q2+Q--- --Z-—-exp(_lqﬁﬂ).
(72)
At the Brewster angle for the substrate, Q, = Q4 = (w/fc){e, + 52)-1/2 and
Fy=-F,=F,, s0
r(8.)= F.(1-2)/(l - F22Z)
o ’ ’ {73)

R (8,) =4F} sinfq, Az/(1 -2Fcos2q, Az + FY)
where g, is the value taken by g at the substrate Brewster angle 0, = atn{¢,/¢, ) /%

g, = (w/e)le — e, 6 /() + 52)]1”- (74)

We see that (73} gives a quadratic dependence of the reflectance on the thickness
Az of the water layer, provided g, Az < 1. This i5 in accord with the general
theory of reflection by thin Jayers on isotropic substrates, which gives (Lekner (1987),
chapter 3)

R,(8,) = [(w/e)}]*/14(e; + )] (75)

as the leading term in the p reflectance at the Brewster angle, with the integral
invariant J, taking the value

I = Az(e, —e)(e—ey)]¢ (76)
for a uniform layer (Lekner (1987), table 3-1).
To estimate R (8,) we will use the refractive indices of Furukawa ef ol (1987)
for ice at 3°C and 633 nm:

ng, = 1.30763 n,=1.30903 ~ 7 7 7
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and n = 1.3327 for the water layer (this is the measured value at 0°C and 633 nm).
We need ¢,, the dielectric constant of the effectively isotropic substrate, and we obtain
this from ¢, = n2 and e, = n2 by using the formula

€= (250 + €e)/3‘ (78)

Then (73) gives R (6,) ~ 7.3 x 107 when Az = 10 nm. Although this is a small
reflectivity, it is well above Elbaum’s noise level. Using the isotropic substrate model,
Elbaum interpreted his reflectivity data as indicating premelting on the basal face of
ice crystals, with Az =~ 10 nm at about 0.5°C,

We now consider the effect of anistropy of the substrate on the p to p reflectivity.
Could the one part per thousand anistropy produce any measurable effect? The
surprising answer is that it does, as we shall now see. The »_, reflection amplitude
is given in (59). We see that it is zero for the base crystalline substrate when
G(Z = 1) = - F}, and this equation defines the Brewster 0 angle for the crystal,
which now depends on the crystal orientation. At this angle F| = £y, and for thin
layers

rop — (G — Fp)/(1 - F§)]2igp A= G =(8G/0Z)z-y (79)

to first order in the layer thickness. From (73) we see that the analogous formula
for an isotropic substrate has <’ missing. The derivative of G(Z) at Z = 1 can be
found from the delining relations (60} and (61):

o = (8= DRI, = ) B0ty = T ) (g + Y KININZ 0)
: [(q + q.)YeS, — (0 + qp) Y, Se)?

We see that it is zero in the isotropic limit, and zero also when 8 = 0 or aq, =
+v K. Numerically we have found it to be small compared to Fg when iie is the
substrate. This does not mean that anisotropy has no effect: since g varies with
crystal orientation, so do F and gg. Upper and lower bounds on @y have been
found (Lekner 1992b); these occur when o = 1 (optic axis parallel to =z, as for
example in reflection from a prism face of ice with the optic axis in the plane of
incidence), and v? = 1 (optic axis parallel 10 z, as in reflection from a basal face of
ice). The formulae giving 85 for o = 1 and for +* = 1 are, respectively,

o(f €,)

€,(€, — el)

tan® gy = ée(—fc'—:—fl—) (81)

tan? @
BT €,(e.— €)

For ice the Brewster angle upper and lower bounds are 52.66° and 52.55°, a variation
of only 0.1°. However, the multiplier of Az in (79) increases by a factor of 1.25
in poing from the a? = 1 to the 4% = 1 reflection. This enormous amplification,
of parts per thousand to one in four, is due to index matching: the refractive index
of the water layer is close to both indices of ice. To see how it works, consider the
isotropic case again. The value of F}, in (73) is

Fo=(r-1)/(r+1) ’J":'\/(€1+€2)/€—€1€2/€2. (82)

This is zero (and » = 1) when ¢ is equal t0 ¢, or ¢,. In the air-water—ice case ¢ is
close t0 €,, and r is close to unity (v ~ 0.992). Thus the two parts per thousand
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difference provided by anisotropy in the effective value of ¢, is to be compared to
eight parts per thousand in |» — 1|: hence the one in four change in the multiplier
of Az Closer index matching would give still greater effect to anisotropy, but at the
expense of a decrease in reflectivity at the Brewster angle. A more detailed discussion
of anisotropy enhancement by index maiching is given in appendix B.

For reflection from the basal plane there is azimuthal symmetry, and the re-
flectance is independent of the plane of incidence. For thin layers the reflectivity at
the Brewster angle (given by the second formula in (81)) has a form like (75) with

Iy =Az {(eoee - E%)/(Eo - €1) - [(Ee - f1)/(fo - 61)16 - €e€1/6} . (83}

Details may be found in section 7-3 of Lekner (1987), which also takes into account
possible layer anisotropy.

Elbaum observed surface melting only on the basal {face. The above factor of
1.25 applies to the greatest possible change in the factor multiplying A z between the
prism and the basal faces. For the basal face, R (@g) with fg given by the second
part of (81) is 8.4 x 10~7 for Az = 10 nm, compared to 7.3 x 10~7 for isotropic
ice using the ¢, found from (78). This 20% difference in reflectance implies that
Elbaum’s thickness estimates are likely to be about 10% high.

We now turn to the ellipsometric experiments, which have the advantage that
the ellipsometric signal is proportional to the thickness of the layer resting on the
substrate, as opposed to the R reflectivity at the substrate Brewster angle, which
we saw is proportional to the square of the small quantity w Az/e. What polariza-
tion modulation ellipsometry measures in the presence of anisotropy is discussed in
appendix A. In the absence of this theory, the experiments of Beaglchole and Nason
(1980) and of Furukawa er al (1987) on the premelting of ice had been analysed by
assuming ice to be isotropic. In the isotropic case, polarization modulation ellipsom-
etry measures the imaginary part of r,/r, at the angle where the real part of r, /7,
is zero. (This follows also as a limit from the anisotropic case: sec the discussion
following (A11) in appendix A.) For thin layers we have (see, for example, Lekner
(1987}, chapter 3)

rp/'rs = fp/fs - giQIK’E‘IL/[(Ql + Q2)2€1€2] +... (84)

where f and f, are the Fresnel reflection amplitudes for the bare substrate, and /|
is given by (76). To the lowest order in w Az fe, the real part of r, /r, is 2ero at the
substate Brewster angle, 65 = atn{n,/n, ). At this angle

Im(rp/7‘s)=[\/51+'52/(€2—‘51)](W/C)Ilr+---- ' - (85)

How much error in the deduced thickness of the water layer is caused by assuming ice
to be isotropic? Since the difference between the ordinary and extraordinary indices
of ice is about one part in a thousand, the error might be expected to be of this
order, In fact we found from (All) that the factor multiplying Az varied by 25%
as the crystal substrate took on differcnt orientations. This was the total variation,
with values bcing calculated that were both larger and smaller than predicted by
(85). As in the reflectivity case, a rcason for the amplification is index matching: the
refractive index of water is close t© both refractive indices of ice. (For more detail,
see appendix B.) In addition to index matching, there is the presence of the s to p and
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p to s reflection amplitudes: instead of r,/r,, polarization modulation ellipsometry
now measures (r,, % 7,.)/(ry £ :r’sp)3 and (85) becomes only a guide to order of
magnitude. Nevertheless, for water on ice the analysis assuming isotropy is correct to
within about +10%.

Appendix A. Polarization modulation ellipsometry of anisotropic media

Jasperson and Schnatterly (1969) introduced the technique of sinusoidally varying the
polarization of the incident beam in an ellipsometer, with synchronous detection of
the intensity modulations. The method is currently extensively used by Beaglehole
and collaborators. This appendix gives the theory of what is measured by polarization
modulation ellipsometry when anisotropy is present. In the Beaglehole (1980) ellip-
someter, the incident beam passes through a polarizer which gives equal amplitudes
of s and p polarization, and then through a birefringent modulator in which the s and
p waves get a (periodically modulated) phase shift relative to each other. The beam
then reflects from the sample, and passes through an analyser to the detector. The
analyser is cycled through two positions, parallel and perpendicular to the polarizer
direction. The amplitudes of the p- and s-polarized waves after reflection are given
by

E, = Top EI‘, + g K E, = rPSE;) +r El (Al)
where E; and E! are the amplitudes of the incident waves after passing through the
polarizer and birefringent modulator. On removing a common factor, these can be
written as 1 and e'®, respectively, where

6(¢) = Asin(Q1) (A2)

in which /2= is the frequency of the modulator. After reflection the p and s
components are thus

Top T rspei6 Tos + rssei's . (A3)

The signal detected after passing through the analyser is thus proportional to
|Ppp + Tepe' & (T + Teet®)[? (A4)

where the two signs correspond to the two positions of the analyser. We will write
(A4) as

[u4 e v = u|® 4 |v|® + 2(u, v, + 4v;) cos § — 2(u,v, — w;v,)sin § (A5)
where
Uy = Typ * L™ Ve = Tgp * 7y | (AG)

and u = u, +iy;, v = v +iv.
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The terms cos § and sin § are sinusoidal functions of sinusoidal argument, which
we may expand using the Jacobi formulae (Watson (1966), section 2.22)

cos(Asin Q1) = J,(A)+2 > Jy, (A) cos(2nQ1)

n=1

N (A7)
sin(Asin Q1) =23 Jy, 1 (A)sin((2n +1)01).

n=0
It is usual to adjust the voltage on the birefringent modulator so as to make J,(A) =
0 (this requires A =~ 2.4048 radians or about 138°, for the lowest root of J,). The
DC component of (AS) is then
DC Jul? + Jv? (A8)

For any value of the A the & and 202 components (measured by lock-in amplifiers)
are

2 —4J, (A} v = wv,) 20 4J,(A) (v, + ). (A9)
Note that

wfv = [uy, + v — i(uy — o) /P (A10)
so the 28 and Q signals are proportional to the real and imaginary parts of

(wfv)g = (rpp T ) /(7 £ 7y} = k(rpp E15,) /(7 1) (A
In the isotropic case (u/v), — =7,/r,, and the Beaglchole measurements are
of Im(r,/r;) at the ellipsometric Brewster angle where Re(r /r,) = 0. In the
anisotropic case onc may (for example) define the ellipsometric Brewster angle by
the zero of the difference of the (222/DC), signals.

Appendix B. Enhancement of anisotropy by index matching

We consider the p to p reflection first. The dominant factor in r,;, for thin layers is,
from (79},

Fp=[{Q-Q/(Q@+ Q] =(R-1)/(R+1). (B1)
For an isotropic substrate the corresponding factor is
Fo=(r~-1)/{(r+1) r? = (6 + €,) f€ — €, €a] €5, (B2)

The ratio R = (Q/Q;),, depends on the Brewster angle, which varies between the
extremes piven in (81). At any angle

R = [ - (K /w)?)/[e - (cK fw)?] /€. (B3)
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For o? = 1 (optic axis parallel to z), we have

(CI\’B/Q})Z = Elfo(fe - 61)/(6069 - E%) (B4)

— 2 — — — ¥
R? = e(e e, —€]) —ere.(e.—€) _ 5 n (e— € )(e; + 265} Ac +O(Ae) . (BS)

- €2(e, — €) =7 3e2(ey — €1)

For v% = 1 (optic axis parallel to z), the corresponding values are

(“-t“r{Bf'"""')2 = Elee(eo - E])/(Goee - 6?) (BG)
R = E(Eoee —:5()5:_61:16)(60 _ G1) =2 (5 — ;ngf:l_tf):ﬂae + O(A€)2‘ (87)

The change in F between the x and z orientations of the optic axis of the substrate
is

AFp = Fp(a® =1) ~ Fg{4*=1)
={e—¢€)(e + fz)Af/{€2(52 —e)r{r+ 1)2} + O(A€)?, (B8)

Thus the fractional change in the multiplier of Az in the reflection amplitude r, is
approximately

AFg/F, = (& + &)A¢/[(cz~ ;)(e — €)r] + O(A€)®, (B9)

(The exact change can be found from (79). We have omitted the factor gg(1 —
%/ Fg}/(1— FZ); for water on ice this has small variation compared to that of Fy.)
We see from (B9) that the enhancement of the effect of the anisotropy Ae¢ = e, —¢, is
achieved in direct proportion that the dielectric constant € of the overlayer is matched
to the average dielectric constant e, = (2¢, + ¢.)/3 of the crystal substrate. When
€= €, »=1and F, is zero: thus for close matching we obtain a large enhancement
of anisotropy, at the expense of weak reflectivity. Conversely, if the ratio given in
(B9) is small compared to unity, anisotropy in the substrate can be neglected. For
air-water—ice the ratio in (B9) ~ —0.22 (left-hand side —0.2165, right-hand side
—0.2167); thus anisotropy is appreciable but not dominant for this system.

We now briefly discuss the enhancement of anisotropy by index matching in ellip-
sometric measurement. The reflection amplitude »,, at the substrate Brewster angle
0 is given by (79). It is of first order in the overlayer thickness, and pure imaginary
in the thin-film limit. The other refiection amplitudes are 7, 7, and 7, (all real),
plus imaginary parts that are first order in the layer thickness. For =, and »,, the
magnitude of the imaginary part is proportional to the real part (see figure 1). It
follows from (79) that the Q signal (see appendix A) which is proportional 1o the
imaginary part of £(7, £, ) /(7 £ 7y,), is approximately +Im(»,,)/7,, provided
Tps and T, are small in magnitude compared to Fg. It then follows from the ar-
guments given earlier in this appendix that the fractional change in Im(r,,) as 6y
varies between its extremes s given approximately by (B9). Thus the magnitude of
(B9) also provides a guide to the importance of anisotropy on the £ component of
polarization modulation ellipsometry: if A Fg /F, is small, anisotropy is unimportant,
provided also that 7, and 7,  are small in magnitude compared to Fg.
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